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1. INTRODUCTION

The simulations of severe flow conditions, such as in unsteady reactive or supers
flows, require robust numerical methods. Many computations use a class of algoritt
based either on flux vector splitting (VS) or on flux difference splitting (DS). Liou an
Steffen [9] have proposed a remarkably simple upwind VS. This splitting, called AUSI
treats the convective and pressure terms separately. The convective quantities are up
biased extrapolated to the cell interface using a properly defined cell face advection M
number. AUSM keeps the qualities of VS (robustness and efficiency) and recovers
accuracy attributed to DS. To capture strong and/or rapid physical fluctuations accura
the local variation of each quantity has to be incorporated as much as possible in
writing of the scheme. For instance, ENO schemes choose the stencil which provides
most regular solution in order to minimize numerical over- and undershoots. In this paj
we take the limiter which minimizes the numerical error terms (dissipative and dispers
terms) following the local evolution of quantities. To improve efficiency, the equivalel
system (ES) needs to be studied, including the expression for the slope limiters. T
expressions are controlled by both the local and the surrounding physical variation of
guantities. For each quantity, six different cases are considered, each associated w
different physical variation. A triad of limiters is defined, which minimizes or cancels tf
second-order truncation errors. From this study, a new explicit scheme is written. Comp:s
to acommon TVD-MUSCL scheme, itis not complicated and gives a more precise soluti
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This scheme is applied to 1-D, 2-D, and 3-D test cases. The results show that we obte
good accuracy compared to ENO or Hermitian schemes.

2. FLUX SPLITTINGS AND MUSCL APPROACH

The hyperbolic part of the conservation form of the 1-D Navier—Stokes equations
classically written as

p pu
Vi+ fy=0 with V=|pul|, f=/|pu?+p]|,
pE puH

(1)
V(x,0) = VOx), —oo <X < +00, t>0.

The equation of state is = pRT. p, u, p, T, R, E, andH are, respectively, the density, the
velocity, the static pressure, the temperature, the universal gas constant, the total en
and the total enthalpy per unit of volume. In discrete form, (1) is expressed as

1
VIt =V — o (Fis — Fi_y),

(2)
Vjn = V(Uj“), o = At/AX, FH% = F(Uj’Ll, U]-“, an+1» Uj”+2),
whereF is a numerical flux which has to verifig (U, ...,U) = f(V), anden =Ujisa

set of physical quantities defined at timat and at grid pointf Ax. Ax is assumed to be
constant anat is related toAx by the CFL condition. With the MUSCL approach [21], the
backward and forward extrapolated valuesJof 1/, at the interfacg + % can be written
as

@1(rj)
Ul = LUj1. Uj U = Uj + %(Um - Up,
01 3
R %2 (rﬁ)
Uit = RUj,Uji1, Ujg2) = Ujg — Uja—Up.
Atthe interfacej — 1, we have
L
(rji-1
U2 = LUj-2,Uj1. Up) = Uja + 222U, - U ),
R ‘pl(%)
UiZyz = RWUj-1. Uj. Ujy) = Uj = ——=(Uj = Uj),

whereg; andgy " are nonlinear functions af; = (U; — U;_1)/(U;j41 — U;). The non-
linear interpolationd. andR have to verify the following propertied?(): homogeneity,
translation invariance, left—right symmetry, and convexity [20].

The flux Fji(1/2) is written in the general form

L R
Fit12=F (Uj+1/2» Uj+1/2) — PAG,
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where
R L
PAG = ¢[G(UJ+(1/2)) - G(Ui+<1/2>)}

is a dissipation term. We are more interested in the primitive form of AUSM splitting.
we define

_ (M- 41)? (MR —1)?
M = F + Fy = - :
MT Fm _ 2 + 2
0 r 0 C L.R
— L _MR
p|=Ff+Fr=|pt(35) + pR(33°) | FER=] peu |
0 0 pcH

then this splitting can be written, at the grid pojnt- (1/2) and for—-1 < M < 1, as

FU"UR) = (Fy + Fp)Fe+ F + Fy @
4
1 FL+FR

® =M, AG=3[FF-F]. Fcz%,

whereM and c represent the Mach number and the speed of sound, respectively. |
possible to take different expressions fdr Generally, it is advantageous to apply the
MUSCL approach to the natural quantities. Because our aim, in the future, is the stud)
the unsteady reactive flows where the temperalucbanges rapidly and where the specific
heatsC, andCy depend strongly off (reactive flows, for example), it seems logical to
choose

U=[p,uT]".

The analysis of ES, also calledodified equationfll, 14], obtained from Taylor ex-
pansions, quantifies the truncation error of the discrete formmxaand At — 0. U andF
are assumed to be differentiable function€34f For each componett;, the expansions
reflect the surrounding physical behavior associated with the specific approach used |
Six different cases are considered for each compaddge(ftig. 1):

case 1: monotonic evolution
no extremum af | case 2: extremum atthe nodes 1andj + 1 | ,
case 3: extremumatthe nofle- 1orj + 1

case 4: no extremum atthe nodes 1andj + 1
extremum af | case 5: extremum atthe nodes 1andj + 1
case 6: extremumatthenofle- 1orj + 1

The different cases considered above may be associated with physical phenomena h
different wavenumberk and therefore may be linked with a range of wavenumbers or
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U U
2l j j+l j+2 j2 g1 i j+1 j+2
CASE 1 CASE 2
U U
A
2 jt j j+l j+2 2 1 j j+l j+2
CASE 3 CASE 4
U U
A
L] L] L] L} L] >
2 j j+l j+2 2 1 j j+l j+2
CASES CASE 6

FIG. 1. Different cases associated with the local physical fluctuations.

single wavenumber:

case 1< 0 <k < T
4AX

2
case2<—>k=—nork= T
3AX 2AX

T T
case 3« oL <k< m(L = length of the domain

T T
case & — <k < —
2L — T 2AX
T
case 5 k= —
AX
2
case6e>k=—n.
3AX

In this approach, the goal is to keep the primitive qualities of the schemes (in particu
the shock-capturing property or the solving of stiff phenomena) and, at the same time
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represent, as much as possible, the unsteady or turbulent fluctuations. Therefore, suffici
strong constraints are applied in some cases but, in others for example, the constraint
weaker in order to develop and not to inhibit the energy cascade for the turbulent flo
From these conditions, in addition to properti®s)( new basic conditions op at the node

j are defined:

(1) To keep the TVD property for cases 4, 5, and 6, the value of a local minimum
nondecreasing and the value of a local maximum is nonincreasing (propenty (

(2) A new extremum may appear at node/hen an extremum already exists in the
environs of nodeg, to expand the energy cascade and to jump from the wavenuirtber
the wavenumberl2 Therefore, the least dissipative scheme will be applied to cases 2 &
3 (property £s)).

(3) When the evolution is monotonic (case 1), the scheme has to keep the TVD prop
and to have an accuracy as high as possible (propBgy.

In general, to avoid nonmonotonic behaviors when the sign of the physical variat
changes, it is assumed that

r<0, ¢o=¢,=0 (a=12) (property(Ps)).

The expressions af come from propertiesR}), . . ., (Ps) and from the study of the ES.
This study permits minimization of the dispersive and dissipative error terms produced
the scheme. Propert{) does not allow extension of this study based on Taylor expansiol
to cases 2 and 3 and, consequently, the theoretical results based on analysis of the
terms concern cases 1, 4, 5, and 6 only.

3. FIRST-ORDER ERROR TERMS IN SPACE
Taylor expansions can be made if the condition at the rjgde

UR = U] <« Max (Juf), 1u’

), (=1...,3),

is assumed. This says that the jump at the interfaiseconsidered to be weak (the strong
discontinuities are excluded from the proof). The ca$B — U-| ~ Max(JUR|, |[UL)) is
not considered in this paper, although it may be present in the velocity under certain circi
stances, such as when this quantity has strong fluctuations around zero. The expansiol
calculated for positive values &. The expressions fdvl < 0 are obtained by symmetry
(g- is replaced bygR and reciprocally).

After calculation of the Taylor expansions glU), ¢, (r (U)) and of the fluxest =
(g, (r(U))) with W = Fy,, Fy, Fe, ... at the nodg for both cased)y # 0 andUy = 0
(with Uyxx # 0), (1) is transformed into

Vi + Fx + AX[A]Uyx + O(AX?) =0, (5)

where [A] is a (3, 3) matrix. The first-order error term in space, forktteequation =1,
2, 3) of the system (5) and for the splitting (4), can be expressed as

3 3 +/ M+ M| Ly + L
1 (Fo P + =5 F' + F) [o]
;Akiuixx = EZ{ 7“\/” Uixx

= | —(FaFu' + MT FY+Fy') 9]
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where
-1 R .
gL'RZQL’R(QD)Zwl(Z )_I_(Pz 2( ) 1 ifU, =0,
g% =g"R) = ¢ R - 9} (D) if Uy # 0,
dg dF+ dF- . dF
‘= F=—— F=——, (FR)' = .
Y= ar dut aur (F7) = gure
The first-order term cancelsg- R = 0; therefore, whek), # 0,
oy =gy =¢; forr=1; (6)
whenU, = 0,
o5y =pR=2 forr =3 (7)

The Taylor expansions at nogenclude the presence of one extremum (cases 4, 5, ar
6) or none (case 1) at this point. But they do not take into account whether one extren
exists or not at the neighbojs— 1 andj + 1. If there is no extremum associated wjth- 1
andj + 1 (cases 1 and 4), any additional constraint appears; but if an extremum is pre:s
at these points, the scheme accuracy automatically degenerates (cases 5 and 6):

¢ If Ux # 0 at nodg, condition (6) is easily met if the nodgs- 1,j, andj + 1 have no
extremum for componend (case 1). In this case, it is sufficient to take the same functio
in the second-order TVD domain for each pojnt 1,j, j + 1.

e If Uy = 0 at nodg, condition (7) is met iff — 1 andj + 1 are not associated with
an extremum. But this condition is no longer met if there exists at least one extremur
one of the neighbors ¢f When wavelength fluctuations are smaller than or equaht® 3
(cases 5 and 6) the first-order error term is still present. In this case, the scheme has strc
dissipative properties to damp these fluctuations.

For case 5, wherg-'R = —1, and for case 6, whegt = —1 andgR = 0, the dissipative
matrix is written, wherM < 1,

[A] = [A]c + [A]a,

with
A1 A2 Az
[Ale=—| UAiz  UA+pAnL UA3 ,
HA1;; HAp+puAin HAp+ pCpAnr
where

C 0 1+ M pC Si6
Al1==M, Ap==[M§ ) , Aiz=—MA-M) (4 — |,
1= 12= 75 ( 15 + IG) 13= = ( ) | di5 +

2
2 0 0 0
[Ala = ~2, %AlZ L(ais+%) 2(A+ 2d6)
0 0 0

815 anddg are the Kronecker symbdl= 5 (case 5) or 6 (case 6).
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WhenM > 1,

A1 % 0
[Al=—|uA+ 8T 2p A1 ZR
H A1 SH +puA; pCprAn

For case 5, wheM — 0, many terms cancel. In particular, the dissipative matrix cancels
there are only density or temperature fluctuations. In this case, a somewhat more com
dissipative function®q in the region ofM ~ 0 may be introduced [13]. For case 6, the
velocity fluctuations, when they exist, avoid use of the functiqrsince the scheme remains
dissipative even foM = 0. For both cases, some elements Af present a discontinuity
atM = 1. The improved scheme AUSMallows attenuation of this problem [10].

4. SECOND-ORDER ERROR TERMS IN SPACE

If, at nodej, the variations of all the componenitk are included in cases 1 and 4, the
spatial derivatives are approximated by a second-order scheme in spgcard chosen
well. The expressions a@f, are defined by studying the second-order error term in spac
The discrete form of Eq. (1) takes the expression

Vi 4 Fx + AXP(x1BUyxx + CUxx + x2DUxx + EUy) = O(AX), 8)
where

[ B=B(U), 1

C =C(of,¢5R, ¢3-,U,Uy) if Ux#0 atnodej (case 1,

CcC=0 if Uy =0 atnodej (case 4,

D = D(U, Uy),

E = E(U, Uy),

x1=1-3¢, andy, = 1—¢] — ¢, if Uy # 0 at nodej,
| X1=2+¢1—¢2+20; —4p, andy, =2+ ¢1— ¢z if Uy =0 atnode;j. |

Because of homogeneity between cases 1 and 4 (Whesd)), the cancelation of for
. . . 2
case 1 gives the following condition g1f = ?T‘g:

P11 = 93R(1) = 95" (D). )

To avoid the appearance of numerical oscillations and to keep only the physical osci
tions with higher wavenumbers (case 5 or 6), it is better to eliminate the dispersive el
term BUyxx. Although these oscillations are damped by the scheme, as we have see
the previous paragraph, it is harmful to drop artificially the scheme accuracy if this is 1
necessary. Therefore, for cases 1 and 4, wgslet 0. Applying conditions (6—7), we have

0o(1) = @1 (1) = % if Ux # Oatnodeg — 1, j andj + 1(case}, (10)
¥(3) =0 if Uy = 0 at nodgj (case 4. (11)
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5. LIMITER EXPRESSIONS

From conditions (6), (9), and (10) and the properfggo Ps, it is possible to define a
family of limiters ¢, at each nod¢. ¢} andg} are expressed in the same way at points
j +1andj — 1, respectively. At each poiitwe define driad of limiters, each adapted
to the local variation of the physical quantitidé at nodej we have

(i) case 1r > 0), we take limiterpary, defined in [1] as

B —K)
1—«

1= @avL= 5 ! [(1 —K) m|n<r i) + 1+« mm( ﬂ with « = 1/3
12)

(this is a third-order interpolation (ijl/z ande'il/2 whenr is closed to 1);
(i) cases 2 and & > 0), we choose the least dissipative limiter to develop the energ
cascade (propertyR%))

01 = peent = 1 (centered interpolation, no TVD scheme (13)
(i) case 4(r < 0), we define
¢1=0; (14)

(iv) cases 5 and & has to verify only the constrairiPs).

The selected triad of limitergyiag is plotted in Fig. 2. This selection is not unique and
other choices of limiters could be made.

¢

cases 2 and 3

cases 4,5 and 6

FIG. 2. Selected triad of limiters.
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Algorithmically, the correction proposed herein is easy to implement and the additiol
time consumed is very small. The new encoding is summarized hereafter.
The expressions (3) are rewritten as

1
Ubp=Uj+ 2@ DA+ A+ )AL,

UjFil/z =Uj;1— %[(1 — ki) Ay, + A+ c)A ]
A4 = Max[0, Min(A, w; B)] sgn(éU); 11,2,
A_j; = Max[0, Min(B, wj A)] sgn(8U);_1/2,
A =68Uj11/259n8U)j_1y2,
B =68Uj_1/2 5gn(éU)j 12,
8Ujt12 =Uj1 — Uj-

This set of equations is well known [24]. For example, with the limiter Superbee [1£
wj =2 and «j =dim(sgr(8U;;1/2), 0) — dim(0, sgriéU;,1,2)) and with the limiter
oatvL[1], w; = 3 —«j)/(L—«j)andk; = 1/3.dim(., .) is the FORTRAN intrinsic func-
tion.

About thegyiag, We have

3 —k;j ) .
wj = (Kl )|2+(1—|2),
l—Kj +é&

ig L
Kj=3 + (1 —ig)iy,

1.
é'abS[Sgn(fSU)jfl/z +sgnéuU) 1721,

i2

o1

4 = iabdsgn(dU)j—s/2 + SQNEU) j—1/2 + SQNEV) j 172 + SQMEV) j372].
whereiabsis the FORTRAN intrinsic function anel — 0. These expressions far; and

«j are the only modifications introduced in the code.
From these expressions, we can summarize the valugsasfdk; in the following table:

~ 37K R
Case 1l W NIy K =3
Case2and 3 wj—>o0 k=1
Case 45, and6 w; =1 ki =0

Although w; andk; take the same values for cases 4, 5, and 6, the scheme does
degenerate into first order automatically, in particular for case 4 because accuracy
depends on the values of these both parameters at joddsandj + 1.

6. NUMERICAL RESULTS

The triad of limiters plotted in Fig. 2 is tested on Euler and Navier—Stokes equatiol
It is applied to the 1-D simulation proposed by Shu and Osher [18] to simulate the
teraction between a moving shock wave and a fluctuating flow. A 2-D simulation of t
interaction between a weak shock and a spot of temperature is proposed. Two cases
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freely decaying isotropic turbulence following the MILES approach [2] are also performe
a quasi-incompressible case and a compressible case. Computations of viscous flov
the advection of a Taylor vortex and 2-D and 3-D temporal compressible mixing layers
presented. The viscous terms are solved with a second-order centered scheme and th
integration is performed by means of the following second-order scheme:

\7]- = V' =0 (Fj112 — Fj-172),

1 - - 3
SV + Vi) =0 (Fjaaz = Fioa)].

(15)
1
an+ —

For the multidimensional problems, a time-splitting method is used [19, 23]. The 2-
and 3-D finite difference operators are split into a product of simpler operators (e.g., fc
2-D problem):

(o () () () ()

£y and £, are the 1-D difference operators in spatial directivasdy associated with
the scheme (15).

6.1. Shu—Osher Test Case

In 1-D, this example is interesting because it uses the Euler equations to simulate
interaction between a moving Mach 3 shock wave and a fluctuating flow represented
sine waves in density. The initial conditions are described as

p = 3.857143 u=2629369 p=1033333 if-5<x<—4,
p=1+02sin& u=0, p=1 if5>x>—4.

The CFL number is equal to 0.5 and the final time4s 1.8. Since the exact solution for
this problem is unknown, the solid line representing the numerical solution with 1600 ce
is assumed to be the exact solution.

Figures 3a—3c show the solution of the density field with 400 cells and the limite
®minmod (the most dissipative of TVD second-order ar&a)perhec(the least dissipative of
TVD second-order area), agdryi. The limitersgminmod @Nd@superbecdive middling solu-
tions.¢minmogdamps the fluctuations and, at the opposite engemecnhances unphysical
amplitudes. The results are better withr, but it is still too diffusive. If gyiag is applied
(Fig. 3d), the solution is comparable to that of the third-order ENO scheme [18]. In part
ular, the high frequencies are well represented and the compression waves and the s
are well captured.

6.2. Spot of Temperature—Shock Interaction

This configuration is a basic model for the interaction of a shock with a flame. Eul
equations are solved. The computational domajny) has a dimension & 1. A uniform
grid with 401 x 101 points is used an@FL=0.5. The plane weak shock is located at
Xs = 1. The prescribed pressure jump through the shockpgp., = 0.4, wherepy, is
the static pressure at infinity, corresponding to a Mach nurivbet 1.1588. The flow is
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0 I I 1 1 0 I 1
-5 -3 -1 1 3 5 -5 -1 1 3 5

-3
a. AUSM and minmod-Roe b. AUSM and Superbee

0 | | | | O | | | i
-5 3 - 1 3 5 -1

— -5 -3
c. AUSM and phi-ATVL d. AUSM and phi-triad

w
(%]

FIG. 3. Shu-Osher test case. Density distributions=at1.8.

initialized using the Rankine—Hugoniot relationships. Initially, the spot of temperature F
a top-hat shape and is surperposed on the base flow upstream of the shock. It is defin

AT 1
- = §[3+tanh 10@0.2 —r)],

withr = /(X — X0)2 + (Y — Yo)2, andxo = 0.5, yo = 0.5 are the coordinates of the initial
location of the center of the spot. The pertubation of temperature is supposed to be isob
Periodic conditions are applied on the upper and lower boundaries. The initial tempera
field is presented in Fig. 4a. This interaction produces vorticity through two counter-rotati
vortices. Att = 3, the spot is far from the shock and the vorticity, concentrated in the core
the vortices, cancels within the shock. With the classical limiters (@agvi), the vorticity
field is not smooth and some irregularities are visible in the shock and behind the s
(Fig. 4b). With gyiag, these problems dissappear (Fig. 4c). On these two last figures,
vorticity contours are plotted witlomax = 3 and wmin = —3. The longitudinal vorticity
distribution aty = 0.64 (line where the maximum value is located) is plotted for bott
limiters. The vorticity level is better kept withyiag and the numerical oscillations through
the shock are nearly canceled (Fig. 5).

6.3. Freely Decaying Isotropic Turbulence

For this test case, the Euler equations are again solved. The simulations are performe
cube of edge length2with 65° uniformly distributed grid points. The boundary conditions
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FIG. 4. (a) Initial temperature field, (b) vorticity field at= 3 with paTv1, and (c) vorticity field at = 3 with
Ptriad -
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FIG. 5. Longitudinal distribution of vorticity fory = 0.64 att = 3.
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enstrophy

0 2 4 6 8 10
t

AUSM with triad

AUSM with triad
—-—-- AUSMwith ATVL —-—-- AUSMwith ATVL

—_ —- ROE  with ATVL - - '_ ROE with ATVL
FIG. 6. Time evolution of enstrophy and Taylor microscale, case C1.

are periodic in the three directions. Two cases studied in [4] are:

e a quasi-incompressible case (C1): initial rms Mach nunmi¥gts = 0.2 and initial
compressibility ratigg = 0,
e a sonic compressible case (CR)ins = 1 andy = 0.05,

where

Urms Vuz?

&
Mims = —= = andx = -<,
c c e

where&. is the compressible part of the spectrum enér¢d]. Overbars indicate the spatial
average. The initial velocity fields have power-law spestide=2"/k) with ko = 2. The
computations are carried out uptte- 10, which corresponds to three initial eddy turn-over
times. The time step has a fixed value. The corresponding CFL numbers vary betweer
and 0.4 for C1 and between 0.3 and 0.2 for C2.

6.3.1. The quasi-incompressible casés explained in[8], at large but finifee the evo-
lution of freely decaying incompressible isotropic turbulence follows two different stage
During the first one, the viscous effects are negligible, the flow develops strongly anisotrc
phenomena, and enstrophy increases dramatically because of vortex stretching. Afterv
viscous effects begin to appear and play a major role on the creation of distorted dissipe
structures. The two stages are represented in Fig. 6, where the enstrophy is plotted v
time. The results obtained with AUSMkiag are compared with three other schemes:

e a two-time-step scheme (15) using AUSM splitting and the third-order linpitey.
which corresponds to the case 1 in Fig. 2,

e Roe TVD scheme witlyamy Using a four-stage Runge—Kutta time marching techniqu
[4],

¢ afifth-order-accurate in space MENO scheme using a three-stage Runge—Kutta T
time marching technique [4].

The schemes AUSMiatyv. and Roegaty give about the same results, with a slightly
better performance for AUSMaTvL. Use Ofpyiag allows improvement of the behavior of
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FIG. 7. Iso-surfaces of a constant value of vorticitytat 10, AUSM-patv. (left) and AUSMyaig (right),
case C1.

the complete algorithm and comparison with equivalent results from MENO. The evoluti
of both the curves is similar but with a time delay on the appearance of the peak of enstroj

The Taylor microscalé., characteristic of the mean spatial extension of the velocit
gradients, is used to measure the resolved gradients with the numerical algorithms. Figt
presents the time evolution affor the four schemes. Again, the best results are obtaine
with MENO and AUSMeyiaq. Particularly, AUSMeyiag gives, at = 10, the smallest value
of 1. At this time, the respective valuesobased on the mesh sizex are summarized in
this table:

Roegparv. AUSM —garv.  MENO  AUSM-gyiag
4. 7AX 4.6AX 4.3AX 4.0AX

The schemes have to reproduce the basic mechanisms of turbulence such as vortex st
ing and the elongated structures called “worms.” Figure 7 shows the contours of vorticity
t = 10 for schemes AUSMparyv. and AUSMyiag. The chosen value is fixed agi)/?
wherew is the local vorticity. These schemes reproduce the worms as in spectral D
simulations but AUSMgyiag gives a finer representation of these structures. Neverthele:
for this case, the dissipation is still too high, particularly for wavenumkersl O (Fig. 8).

If a centered interpolation is used for the MUSCL approack-(1, vr), the kinetic energy
spectrum is proportional &7 (Fig. 9) as found in [7] during a lapse of time just before the
computation blows up. The scheme is no longer sufficiently dissipative to attenuate the a
mulation of energy at the greatest wavenumbers. But if a correct SGS model (Smagorir
model) is coupled with this AUSM-centered scheme, the theoretisAB slope is obtained
(Fig. 9).

6.3.2. The compressible caselhis case looks like the one studied in [12], whistg,s =
1.0 and y = 0.068. With a PPM scheme and a high grid resolution £1the authors
distinguished three different temporal phases: an onset phase with the appearance of sl
atits end (O< t < 0.95, the time scale has to be dividedsbyo fall back on the scale used
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FIG. 8. Kinetic energy spectrum at= 10, case C1.

in [12]), a supersonic phase with the setup of strong density conisagtsomin(0.95 <

t < 6.6), and a post-supersonic phase with a presence of vortex interactions and the vor
decay. The three phases are visualized in Fig. 10, where the time evolution of the der
contrast is plotted for MENO and AUSMgiag Schemes. The evolutions are close to thos
found in [12] and the physical trends are reproduced.

10'

10°

N R W | 3 . . I TRVERN S |
10 20 30 10 20 30
k k

FIG. 9. Kinetic energy spectrum with a centered scheme without (left) and with a Smagorinsky model (rig
att = 10, case C1.
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FIG. 10. Time evolution of density contrast, case C2.

The time history of the kinetic energy plotted on Fig. 11 shows that AUgM; retains
more energy than the others along the second and the third stages. In particular, it pres
more compressible energyfort > 1, the time where the spectrum of compressible energ
begins to be saturated (Fig. 11).

6.4. Taylor Vortex Advection

The squareddomain( y) hasadimension 1 and Navier—Stokes equations are solved
A uniform grid with 202 points is employed and CF& 0.5. An isolated Taylor vortex
is initially superposed on a uniform flow with a Mach nhumbér= 0.8 and a Reynolds
numberRe= 10*. The tangential velocity is given by

Vj(r) = Cyre=C,

with

Cy = ?el/z, C,= %’, r=+v(X—-x0)2+(y—yo? and r.=0075
c c

With these values, the viscous core radius 2.1The initial position of the vortex cen-
ter isxo = 0.5, yp = 0.5. Periodic conditions have been applied in both directions on tt
boundaries.

The simulation is performed over a dimensionless time 5, corresponding to the
advection of the vortex over five lengths of the domain. Because of the effects of b
molecular viscosity and numerical diffusion, the viscous core radius is a growing functi
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FIG. 11. Time evolution of energy decay (left) and compressible energy decay (riggtAUSM-¢rriad,
2=AUSM-gpatyL, 3=MENO), case C2.

of time. The pressure defect is located in the center of the vortex. The results obtained
¢uiag are compared with those obtained with a sixth-order-accurate Hermitian scheme
the same grid. It can be noted in Fig. 12 that the AUBNg scheme gives results in very
good agreement with the Hermitian scheme. To get a finer analysis of the capability of
AUSM-¢yiaqg SCheme, a zoom around the center of the vortex is provided on the longitudi
distributions ofv and p.

6.5. 2-D Time-Developing Mixing Layer

This test case consists of two streams moving in the opposite directions, with a smc
velocity profile in between:

1
u= Etanf(Zy).

The mean temperature profile is

~1
T=1+M?Y

5 (1—u?), (16)

with M = 0.8 andy = 1.4. The flow is periodic in the streamwise directiapand symme-
try conditions are applied in the normal directignThe mesh is uniform in both directions.
The computations are realized on two grids @L66lls (G1) and 308 cells (G2)).

This flow is sensitive to small disturbances, and so the instability is forced by addi
small perturbations’ andv’ to the mean flow,
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FIG. 12. Taylor vortex advection: longitudinal distribution along the centerline of the domain of the velocit
componenb (top) and the static pressupg(bottom) att = 5.

with amplitudeo = 0.05 and wavelength, = 2050, wheres,o = 1 represents the initial
vorticity thickness. The height of the domainlig = 26. The vorticity thickness is defined
as
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FIG. 13. 2-D mixing layer. Time evolution of vorticity thickness.

whereAu is the difference between the velocities in the upper and lower domaisrsd ~—
puU are spatial averages in thxedirection. Two-dimensional Navier-Stokes equations ar
solved. The convective Mach numberdds = 0.38, the Reynolds numberi&e= 400 and
CFL = 0.5. The growth history of the mixing layer is shown in Fig. 13 and compared wi
ENO computations under the same initial conditions. The ENO scheme is still sensit
to the grid mesh, whereas the AUSpIg scheme is already independent. AUSMaq
gives a result with 150cells similar to that of ENO with 300cells. The only difference
is located in the nonlinear phase where the growth,af faster with AUSMeyiag. Five
vorticity contours obtained on the gri@l with AUSM-patvi, AUSM-¢yiag, and ENO
schemes are plotted in Fig. 14. The differences are weak in the vortex but AbJghas

a best behavior in the braid.

ENO 150 * 150 ATVL 150 * 150 Triad 150 * 150

0.
0.
0.
0.
0.

FIG. 14. 2-D mixing layer. Iso-vorticity at = 50.
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FIG. 15. 3-D mixing layer. Time evolution of vorticity thickness (computatioy).

6.6. 3-D Time-Developing Mixing Layer

As in the previous case, Navier—Stokes equations are solved. The results of pldgM-
scheme are compared with the results of a DNS computation. The initial conditions
defined in [16]. The essential conditions of the computation are rewritten here: the dom
has a parallelepipedic shape with 65 grid points uniformly spaced in each direction. T
box lengths ard x = L, = 13.36 andL, = 10. Periodicity conditions are imposedn
andy directions and a slip condition is applied on the walls bounding the domain in tl
z-direction. The mean velocity profile is given by

u = erf(y/m)
and the temperature profile has the expression (16). The static pressure is URder600,

M. = 0.8, andCFL = 0.5. The initial conditions are specified by adding a small randor
number to each quantity(u, v, w, T). For example,

p(X,Y,2) = p(X,y,2) +arexp ™,

wherea = 0.0001 (computatioe;) or 0.0025 (computatio€,) andr is a random number
uniformly distributed betweer0.5 and 0.5.
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X

FIG. 16. 3-D mixing layer. One static pressure surfacé at45 (computatiorC,).

The time-developing mixing layer follows three phases. The first one corresponds
the linear growth of the fundamental, most unstable mode. The second one describe:
nonlinear setup (growth of the subharmonic waves) and the last one describes sature
The time evolution of the thickness vorticity during the linear phase is plotted on Fig.
(computationC;) and compared with the result obtained in [16] with a direct numerice
simulation.

After Sandham and Reynolds [16], with an initial disturbance of the form

=0 eXp’(ﬁXerwa’[)

whereg andy are the wavenumbers it andz-directions respectively arlis an eigen-
function of the linear instability wave, the oblique mode is the most amplified whea 0.6
M. < 0.8. The behavior of the flow becomes strongly 3D. The results of this simulati
are presented in Figs. 16 and 17 (computatih One static pressure contour value is
shown att = 45 (linear phase) and &t= 65 (starting of the nonlinear phase). tA 45,
the minimum and the maximum valuespfre pmin = 1.0146 andpmax = 1.0163 and the
plotted value of the surface {Sotted = 1.0156. Att = 65, pmin = 0.8482, ppax = 1.115,
and ppiotted = 0.95. As explained in [16], wheM. = 0.8, during the linear phase, there is
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X

FIG. 17. 3-D mixing layer. One static pressure surfacé at65 (computatiorC,).

no longer any tendency toward a spanwise coherence and wavesae4host common.
This behavior is well described by the scheme.

7. CONCLUSION

The test cases show that it is possible to improve the accuracy of the MUSCL appros
This becomes equivalent to ENO family schemes or Hermitian schemes for the compres:
flows if the nonlinear functiong are expressed in @yiag taking into account the local
variations of each quantity. For the quasi-incompressible flows, an AUSM-centered sche
coupled with a SGS model seems to be a good approach. Adding to the basic well-kn
advantages of the algorithm proposed herein, the good accuracy of the numerical solL
opens new perspectives for the schemes based on the MUSCL approach, particularl;
simulations of unsteady or transient flows. Algorithmically, the correction proposed her:
is easy to implement and the additional time consumed is very small. Other computati
[5] show that thepyiag associated with Roe splitting brings out the same improvements |
the coupling AUSMeyiag.
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